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Dark matter (DM) has been searched for at colliders in a largely model indepen-

dent fashion by looking for an excess number of events involving a single jet, or

photon, and missing energy. We investigate the possibility of looking for excesses

in more inclusive jet channels. Events with multiple jets contain more information

and thus more handles to increase the signal to background ratio. In particular,

we adapt the recent CMS “razor” analysis from a search for supersymmetry to a

search for DM and estimate the potential reach. The region of razor variables which

are most sensitive to dark matter are not covered by the current SUSY search. We

consider simplified models where DM is a Dirac fermion that couples to the quarks

of the Standard Model (SM) through exchange of vector or axial-vector mediators

or to gluons through scalar exchange. We consider both light and heavy (leading to

effective contact interactions) mediators. Since the razor analysis requires multiple

jets in the final state, the data set is complementary to that used for the monojet

search and thus the bounds can be combined.
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I. INTRODUCTION

Through precision cosmological measurements, we have uncovered many of the general

properties of dark matter (DM) in the cosmos. However, further determinations of the

properties of DM and its distribution throughout the universe will require probing beyond

its gravitational interactions. Although there is considerable effort underway to indirectly

observe DM through the signatures of DM annihilations in places of high expected density,

such as the centers of our galaxy, galaxy clusters and dwarf galaxies, there is no substitute

for detection of DM in a controlled lab setting. To this end, there are many experiments

presently searching for direct observation of DM scattering off nuclei in underground labs.

Intriguingly, both indirect and direct searches are finding interesting anomalies that are

consistent with what is expected from DM. Unfortunately, there is also considerable confu-

sion since many of these excesses could also be consistent with backgrounds or systematic

effects. Furthermore, both the indirect and direct search techniques rely on inputs from

astrophysics, such as the spatial and velocity distribution of the DM in our galaxy, or the

spectrum and morphology of high energy gamma and cosmic rays, which are notoriously

difficult to estimate.

High energy colliders provide an alternative [1], complementary way to search for DM

that is independent of assumptions about astrophysical quantities. If DM is to be found in

direct detection experiments then it must couple to quarks or gluons, and thus it is possible

to directly produce DM in high energy hadron colliders. Since DM carries no SM charge,

it will leave the detector without further interactions, resulting in a missing (transverse)

energy signature ( /ET ). Thus, the observation of an excess of events in channels involving

missing energy could provide tantalizing evidence of the production of DM, and from these

channels, DM properties such as its mass could be determined. Similarly, if there are no

observed excesses, one can place limits on the size of putative DM-quark/gluon couplings.

These collider limits can be re-expressed as a limit on DM-nucleon couplings and compared

to the limits that come from the absence of events in dedicated direct detection experiments

such as CDMS [2] and XENON100 [3].

Many models of beyond the standard model (BSM) physics contain a viable DM can-

didate, and thus predict events involving /ET . Many ingenious search strategies have been

developed within the context of particular models, but these strategies often rely on other
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unique and unrelated features specific to the model. Furthermore, without independent

evidence for any of these models, and armed only with the knowledge that DM exists, it is

worthwhile to consider more model independent search strategies. The simplest final state

that could involve the production of DM and serve as a limit on its couplings is a mono-

jet/monophoton in association with missing energy. At the Tevatron, a search for j + /ET

that was originally designed to search for large extra dimensions [4, 5] has been recast as a

constraint on DM production, both through contact interactions of DM and the SM [6–8],

and through the presence of a light mediator particle [7, 9, 10]. These analyses were based

on ∼ 1 fb−1 of data and a simple cut-and-count approach. Recently, CDF has carried out a

dedicated search for DM in the monojet channel, using 6.7 fb−1 and the full shape informa-

tion contained in the monojet spectrum [11]. For heavy DM, these bounds can be improved

upon by going to the LHC, and analyses of monojets [10, 12, 13] and monophotons [13] have

been carried out on ∼ 1 fb−1 of data. Very recently CMS has released a DM search in the

monophoton channel [14]. Constraints from LEP monophoton and missing energy searches

have also been calculated [15, 16].

Although the monojet/monophoton is certainly the simplest final state one can expect to

find DM, it does not necessarily result in the strongest limits1. At the high collision energies

typical of the LHC, one expects a hard process to be accompanied by several high pT jets,

and the veto required to fit into the one jet topology may restrict the signal efficiency. In

addition, events with multiple jets contain more information, such as inter-jet angles. As we

shall see, optimizing searches with respect to these variables may improve the ratio of signal

to background efficiencies. There are approaches such as the CMS “monojet” search [18]

which allow a second hard jet as long as the topology is sufficiently far from back-to-back that

QCD backgrounds are suppressed. We take this philosophy one step further and investigate

a more inclusive search approach that allows an arbitrary number of hard jets, as long as

there is also considerable missing energy, see also [19]. We base our strategy around that

used by the CMS “razor” analysis [20, 21], which was originally employed to search for

supersymmetry, and was based on approximately 800 pb−1 of data [22].

This paper is outlined as follows. In Sec. II, we introduce both the effective theory

1 As has recently been discussed [17], if there is a light mediator coupling the SM to DM, searches for the

mediator in the dijet channel are a complementary way to constrain the DM and its couplings.
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of DM coupling to quarks through contact operators, and some simplified models which

UV complete these by introducing a mediator light enough to be accessible at the LHC.

We describe the razor analysis in Sec. III, beginning with a description of the analysis

in Sec. III A. In Sec. III C, we outline our results for the case of contact operators and

in Sec. III E, we compare the collider bounds with direct detection bounds. Finally, we

address the issues that arise with light mediators and the validity of using an effective

theory in Sec. IV.

II. A SIMPLIFIED MODEL OF DARK MATTER INTERACTIONS

As mentioned above, searches for DM in many models of BSM physics utilize additional

features of the model, such as production of colored states that ultimately decay to DM.

Here, we wish to follow an approach that is more model independent and we introduce

simplified models [23] that couple DM to the SM. In addition to the SM, these models

contain the DM, χ, which we assume to be a Dirac fermion 2, and a mediator particle that

couples to the DM and states in the SM. The nature of the mediator will determine the form

of the SM-DM coupling and whether the non-relativistic limit is spin-independent (SI) or

spin-dependent (SD). We will consider vector, axial-vector, and scalar mediators, which give

a representative sample of the different behaviors possible at colliders and direct detection

experiments; for a more complete list of possibilities see for example [8, 24]3. The interaction

Lagrangians for these mediators are given by:

LV = gχ χ̄γµχZ
′µ + gq q̄γµq Z

′µ , (1)

LA = gχ χ̄γµγ5χZ
′µ + gq q̄γµγ5q Z

′µ, , (2)

LG = gχ χ̄χ S + αs
S

F
Ga
µνG

aµν , (3)

where q is a SM quark field, Ga
µν is the gluon field strength tensor, Z ′ denotes a spin-1

mediator and S denotes a spin-0 mediator.

2 This choice has little effect on our results, although the vector coupling would not be allowed for the case

of Majorana DM.
3 We do not consider the scalar operator, (q̄q)(χ̄χ), since this type of operator is suppressed by a Yukawa

coupling. As a result the limits on Λ are expected to be weak and in a region where the effective theory

is not valid [13].
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We start by considering the limit of the simplified model where only the DM is accessible

at colliders [19], and the mediator is integrated out. In this limit, with very heavy mediators

(>∼ few TeV), we can use the framework of effective field theory. The resulting effective

operators for each choice of mediator are:

OV =
(χ̄γµχ)(q̄γµq)

Λ2
, (4)

OA =
(χ̄γµγ5χ)(q̄γµγ5q)

Λ2
, (5)

OG = αs
(χ̄χ)(Ga

µνG
aµν)

Λ3
, (6)

where Λ2 = M2
Z′/gχgq in both OV and OA, and Λ3 = FM2

S/gχ for OG. In Sec. IV, we

will discuss whether this effective theory approach is valid and the effects of keeping the

mediator in the simplified model. We calculate the bounds for the up and down quarks

separately, but the bound for any linear combination of quark flavors can be derived from

these bounds [13].

We ultimately want to compare collider bounds to direct detection bounds. Here, the

effective theory in equations (4)-(6) is always valid. In order to match the quark-level

operators to nucleon-level operators, the coupling between the SM and DM must be of the

form OSMOχ, where OSM contains only SM fields and Oχ involves only DM such that we can

extract the matrix element 〈N |OSM |N〉 [25]. At colliders, for a Dirac fermion χ, both OV
and OA contribute to χ production with roughly equal rates. However, in direct detection

experiments, the spin-independent OV dominates over the spin-dependent OA. OV vanishes

if we change our assumption to Majorana DM.

III. RAZOR

In this section, we estimate bounds on DM operators with the razor analysis. We begin

with a description of the general razor analysis as used by CMS [22]. We then compare the

shape of signal and background events in the razor variables, MR and R2, and identify cuts

which are optimal for searching for dark matter. To test the sensitivity of this search we

compare the results of such a razor analysis with 800 pb−1 to a mono-jet analysis which

uses 1 fb−1 [13], and show how the bounds from these two complementary analyses can be
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combined4.

A. The Razor Variables

The objective of the razor analysis is to discriminate the kinematics of heavy pair pro-

duction from those of the SM backgrounds, without making any strong assumptions about

the /ET spectrum or the details of the subsequent decay chains. Furthermore, background

events follow very clean exponential distributions in the razor variables which allow for data-

driven analyses to be carried out, without heavy use of Monte-Carlo simulations to predict

backgrounds.

The baseline selection requires at least two reconstructed objects in the final state, i.e.

calorimetric jets or electrons and muons that satisfy lepton selection criteria. These objects

are combined into two “megajets”. In our analysis most events contain only two jets in

which case each jet is promoted to a megajet, but in the most general case the megajets are

created using a “hemisphere” algorithm described below [26]. The hemispheres are defined

by Pi(i = 1, 2) which is the sum of the momenta of high pT objects in the hemisphere.

The high pT objects k in hemisphere i satisfy d(pk, Pi) < d(pk, Pj) where d(pk, Pi) ≡ (Ei −

|~Pi| cos θik)
Ei

(Ei+Ek)2
, and θik is the angle between ~Pi and ~pk. The hemisphere axes, Pi, are

defined by the following algorithm.

1. Assign P1 to the object (jet, lepton, photon) with the highest pT and P2 to the object

that gives the largest invariant mass as a pair with P1. The four-momenta P1, P2 are

the seeds for the hemisphere axes.

2. Go through the rest of the objects in the event, ordered by pT , and assign pk to

hemisphere 1 if d(pk, P1) < d(pk, P2), or 2 otherwise.

3. Redefine Pi as the sum of the momenta in the ith hemisphere.

4. Repeat 2-3 until all objects are assigned to a hemisphere.

The two megajet four-momenta are taken to be the two hemisphere axes, P1 and P2.

4 We use 800 pb−1 of data to match the most recent razor search, but our techniques can easily adapted to

upcoming updates to this analysis.



7

In addition to this hemisphere algorithm for defining the megajets we also considered

a simple approach where the n objects in an event are partitioned into two groups in all

possible (2n−1 − 1) ways and the partition that minimizes the sum of the megajet invariant

mass-squared is chosen. The two hemisphere algorithms give similar results.

The razor frame is the frame in which the two megajets are equal and opposite in the ẑ−

(beam) direction. In this frame, the four-momenta of the megajets are

pj1 =

(
1

2

[
MR −

(~pj1T − ~p
j2
T ) · ~/ET

MR

]
, pj1T , pz

)
, (7)

pj2 =

(
1

2

[
MR +

(~pj1T − ~p
j2
T ) · ~/ET

MR

]
, pj2T ,−pz

)
, (8)

where MR is the longitudinal boost invariant quantity, defined by

MR =

√
(Ej1 + Ej2)

2 − (pj1z + pj2z )2 . (9)

The other longitudinally invariant razor observables are

MT
R =

√
/ET (pj1T + pj2T )− ~/ET · (~pj1T + ~pj2T )

2
, (10)

R =
MT

R

MR

, (11)

here pT = |~pT |. Note that the missing transverse energy, ~/ET is calculated from all activity

in the calorimeters whereas ~p
j1,2
T involve just the jets above our cuts.

MR provides an estimate of the underlying scale of the event. MT
R is the transverse

observable that also estimates event-by-event the value of the underlying scale. The “razor”

variable R2 is designed to reduce QCD multijet background to manageable levels. R is

correlated with the angle between the megajets. Events where the two mega-jets are roughly

co-linear have R2 ∼ 1 while events with back-to-back megajets have small R2. In general

R2 has a maximum value of approximately 1, and the QCD multijet background peaks at

R2 = 0. Thus, by imposing a cut on R2, one can essentially eliminate the QCD multijet

background.

B. Analysis

The razor analysis uses a set of dedicated triggers which allow one to apply low thresholds

on MR and R2. The events that pass the triggers are then classified into six disjoint boxes
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nj = 0 nj = 1 nj = 2 nj = 3 After cuts

(Z → ν̄ν)+jets 3960 470 150 33.7 18× 10−2

(W → `invν)+jets 10585 836 317 96.5 2.0× 10−2

(W → τhν)+jets 5245 676 160 48.8 6.8× 10−2

tt̄ 12.4 – – – 1.5× 10−3

χ̄χ 5.46 2.31 0.77 0.33 4.3× 10−2

TABLE I: Background and signal (for mχ = 100 GeV and Λ = 644 GeV) cross sections (in pb)

before and after analysis cuts. nj is the number of jets. The matching scale is taken to be 60 GeV,

see text for details.

which correspond to different lepton selection criteria [27]. For our purposes, we consider

only the HAD box which contains all the events that fail lepton requirements, described

below. After QCD is removed using a strong R2 cut, the dominant backgrounds to our

process are (Z → ν̄ν)+jets, (W → `invν)+jets, (W → τhν)+jets, and tt̄, where `inv denotes a

lepton that is missed in the reconstruction, and τh is a hadronically decaying tau-lepton. We

have simulated the dominant SM backgrounds using MadGraph5 [28] at the matrix element

level, Pythia 6.4 [29] for parton showering and hadronization, and PGS [30] as a fast detector

simulation. We generate W/Z + n jets, where n = 1, 2, 3 for the background, and use MLM

matching [31] with a matching scale of 60 GeV. We generate both matched and unmatched

samples for our signal, and find that the matched sample gives approximately a 15% increase

in the number of events passing our analysis cuts, as compared to the unmatched sample. In

what follows, we use unmatched samples for the signal events; using a matched sample will

increase our bounds by a few GeV but does not change our conclusions. The cross sections

for the dominant backgrounds, and an example signal point, are shown in Table I.

Following [22], in every event we require jets to have pT > 60 GeV, |η| < 3.0. Elec-

trons(muons) are required to have pT > 20(10) GeV and |η| < 2.5(2.1), and we include

τ -leptons, which decay hadronically, in our definition of jets. Only events in which ∆φ be-

tween the two megajets is less than 2.8 are kept. With these requirements the events will

pass the dedicated razor triggers, although they would often fail those for other analyses e.g.

αT , HT . One advantage of the razor analysis lies in the simple shape of the SM background

distributions; the MR and R2 distributions are simple exponentials for a large portion of
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the R2 −MR plane. By fitting the distributions of the razor variables MR and R2 to an

exponential function, one can utilize a data-driven description of the background without

having to rely on Monte Carlo (MC) estimates. Since we do not have access to the data,

we must carry out a MC based analysis. As a check of the validity of our MC analysis we

compare our results to the yields found by CMS in different bins of R2 and MR. We find

that our MC simulations for the background in the HAD box fall within the expected 68%

range expected by CMS, and thus are consistent with the CMS simulations (see Fig. 9 of

Ref. [22]), which in turn agree well with data.

C. Signal and Background Shapes

The shape of the MR and R2 distributions for the dominant backgrounds and a sample

signal are shown in Fig. 1. The dependence of the signal shape on dark matter mass is

shown in Fig. 2. The signal shapes when dark matter couples to sea quarks or to gluons

are shown in Fig. 3. The shapes depend on the scale and the kinematics of the production

process. The location of the MR distribution peak is determined by the event scale and

kinematic cuts. The MR distributions of (Z → ν̄ν)+jets, W+jets, and χ̄χ+jets all peak at

approximately the same value of MR ≈ 200 GeV, whereas the MR peak for tt̄ is higher due

to the inclusion of tops in the megajets.

The shape of R2 distribution is affected by the kinematics of the process and is somewhat

different for signal and background. Background events are highly peaked at low R2, where

the megajets are more back-to-back, whereas signal events are more evenly distributed in

R2, with a significant population at high R2. The difference in event shapes, signal events

being more likely to produce collinear megajets, originated from different diagrams which

dominate production.

The SM backgrounds are dominated by invisible decays of a Z boson, see Table I, for

which the dominant production mechanism at the LHC is through quark-gluon collisions

with qq̄ collisions giving a much smaller contribution. In quark-gluon collisions the Z tends

to be emitted in the backward direction (close to the beam from which the gluon came).

This tends to give the Z a lower pT compared to events which originate in qq̄. Due to the

high pT cuts on the individual jets their transverse momenta must largely cancel to balance

the Z. Thus, the ∆φ distribution is peaked near π for background.
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(a) (Z → ν̄ν)+jets.
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(b) W+jets.
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(c) tt̄.
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(d) Signal (Mχ = 100 GeV, Λ = 644 GeV).

FIG. 1: R2 vs. MR distribution for SM backgrounds (a) (Z → ν̄ν)+jets, (b) W+jets (including

decays to both `inv and τh, (c) tt̄, and (d) DM signal with Mχ = 100 GeV and Λ = 644 GeV. In

all cases the number of events are what is expected after an integrated luminosity of 800 pb−1.

The cuts applied in MR and R2 are shown by the dashed lines and the “signal” region is the upper

right rectangle.

On the other hand, signal events are dominantly produced from the qq̄ initial state. This

is because qq̄ and qg initiated cross sections scale differently with the invariant mass of

the dark matter pair. This is reminiscent of the scaling of Z + j at LHC, where the gq-
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(a) Mχ = 0.01 GeV.
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(b) Mχ = 100 GeV.
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(c) Mχ = 800 GeV.
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(d) Mχ = 1000 GeV.

FIG. 2: R2 vs. MR for various DM masses with u-only vectorial couplings with arbitrary normal-

ization.

initiated cross section is proportional to m2
Z while the qq̄-initiated one scales like m4

Z . If

the Z mass were higher, Z + j would have been dominantly qq̄-initiated. Similarly in our

case DM production is dominatly qq̄-initiated because the χχ̄ invariant mass (analogous to

the Z mass above) is typically far above the weak scale, see Figure 8. This difference in

production mechanisms results in a more isotropic distribution of the jets and consequently

a different distribution in R2, tending more towards high values. This difference increases
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 [GeV]RM
0 200 400 600 800 10001200 1400

2
R

0
0.2
0.4
0.6
0.8

1

1.2
1.4

0

5

10

15

20

25

30

(b) Gluon couplings.

FIG. 3: R2 vs. MR for DM coupling to (a) sea quarks (in this case the s-quark) and (b) gluons

with arbitrary normalization.

as DM mass increases, as the peak in R2 also moves higher as DM mass increases (Fig. 2)

while the MR distribution remains approximately the same. The difference in production

mechanisms remains at NLO, which we have checked using MCFM [32, 33].

We also find that the MR and R2 distributions for DM coupling to sea quarks, shown

in Fig. 3, are similar to those of background. This is because for sea quarks the dominant

production is qg (as well as q̄g) because of their smaller PDF’s, which is similar to the

dominant background production mechanism. For coupling to gluons, where the gg initial

state dominates, the distribution gives a more even coverage of the MR −R2 plane, as seen

in Fig. 3.

D. Results

Based on the distributions shown in Figs. 1, 2, and 3, we find that our optimal signal

region is MR ≥ 250 GeV and R2 ≥ 0.81. We use the number of events in the signal region,

the upper right rectangle in Fig. 1, to place estimated constraints on the cutoff scale Λ. At

90% exclusion, we require

χ2 ≡ NDM(mχ,Λ)2

NDM(mχ,Λ) +NSM + σ2
SM

≤ 2.71 , (12)
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where NDM is the expected number of signal events for a given DM mass mχ and scale

Λ, NSM is the expected number of background events, and σSM is the uncertainty in the

predicted number of background events. Through our Monte Carlo simulations, we estimate

that the number of background events is 144.0 for (Z → ν̄ν)+jets, 70.4 for W+jets, and 1.2

for tt̄, giving a total of NSM = 215.6 for a luminosity of 800 pb−1, the approximate amount

used in the Razor analysis [22]. The tt̄ background does not give a large contribution since

the majority of events with significant /ET are vetoed by the presence of leptons in the events

and do not pass our cuts. We did not attempt to calculate the QCD background since we

expect a negligible number of events from this channel in our signal region. The error σSM in

the razor analysis is statistics dominated which implies σSM ∼
√
NSM . We adopt this value

as our default value for the standard model uncertainty, but to be conservative we will also

present the limit in the case where there is an additional and equal source of systematic error.

The calculated bound for vector and axial couplings of DM to valence quarks is given in

Fig. 4, where we see that the existing razor analysis gives bounds that are competitive with

the monojet results. We present the limit as a band extending between the two assumptions

for the uncertainty σSM =
√
NSM and σSM = 2

√
NSM . In the rest of the paper we use the

√
NSM limit which we expect to be realistic. Note that, there is no significant difference

between the bounds for vector or axial couplings. This implies that as opposed to direct

detection, spin dependent limits will be just as strong as spin independent ones.

The razor analysis requires at least two jets in the final state, so the data set is comple-

mentary to that used in the monojet search. Since the bounds are slightly, but not hugely,

stronger than those from monojet there is utility in combining the bounds from the razor

and monojet analyses. We do this by solving

χ2
monojet(mχ,Λ) + χ2

razor(mχ,Λ) = 2.71 , (13)

where the χ2 are defined in Eq. 12. We find that the combined bound is a few percent higher

than the razor bound alone (Fig. 5).

E. Comparison with Direct Detection and Annihilation Cross Section

We now translate the collider bounds found above into constraints on direct detection

scattering rates by following the approach of Ref. [13]. This allows us to show the collider



14

H Χ Γ
Μ

ΧL Iu ΓΜ uM

H Χ Γ
Μ

ΧL Id ΓΜ dM

ATLAS 7 TeV Monojet bound, 1 fb-1, veryHighPt  

0.01 0.1 1 10 100 1000
200

300

400

500

600

700

mΧ @GeVD

L
@G

eV
D

(a) Vector couplings.

ATLAS 7 TeV Monojet bound, 1 fb-1, veryHighPt  

I Χ Γ
Μ

Γ
5

ΧM Id ΓΜ Γ
5 dM

I Χ Γ
Μ

Γ
5

ΧM Iu ΓΜ Γ
5 uM

0.01 0.1 1 10 100 1000
200

300

400

500

600

700

mΧ @GeVD

L
@G

eV
D

(b) Axial couplings

Αs Χ ΧG
ΜΝ

GΜΝ

ATLAS 7 TeV Monojet bound, 1 fb-1, veryHighPt  

0.01 0.1 1 10 100 1000

200

250

300

350

400

450

mΧ @GeVD

L
@G

eV
D

(c) Gluon couplings

FIG. 4: Cutoff scale Λ bounds for vector, axial, and gluon couplings. The error band is determined

by varying σSM between
√
NSM and σSM = 2

√
NSM . The dashed line is the bound determined

by the monojet analysis [13].

limits in the standard σ−mχ plane. We use the values found in [7] to calculate the coefficients

required to translate the quark level matrix elements 〈N |q̄γµq|N〉 and 〈N |q̄γµγ5q|N〉 into

the nucleon level matrix elements. For the matrix element of the gluon field strength in the

nucleon, 〈N |αsGa
µνG

aµν |N〉 = −8π
9

(
mN −

∑
q=u,d,s〈N |mq q̄q|N〉

)
, we follow the approach of

[34] using an updated value of the pion-nucleon sigma term ΣπN = 55 MeV [35].

We make the simplifying assumption that the effective DM-SM couplings are universal in

quark flavor. However, we can account for different u and d couplings (i.e. cu 6= cd, where the

couplings to DM are of the form cu(d)/Λ
2) by rescaling the collider limits on the DM-nucleon

cross-section by a factor of (Λ4
u + Λ4

d)/(c
2
uΛ

4
u + c2

dΛ
4
d). The bounds on the DM-nucleon cross-
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FIG. 5: Combined razor and monojet Λ bounds. The solid lines are the razor bounds and the

dashed lines are the combined bounds.

sections for various operators can be found in Fig. 6. From the figure, we can see that collider

experiments can probe DM mass regions below direct detection experiment thresholds. In

the case of spin-independent scattering, the cross section bound obtained from OG is 2-3

orders of magnitude below the cross-sections required to fit the excesses seen at DAMA,

CoGeNT and CRESST. Moreover, the bound for OG is competitive with the cross-section

bounds obtained from CDMS and XENON experiments. The DM-nucleon spin-dependent

scattering is not coherent over the whole nucleus, therefore the cross section bounds from

spin-dependent experiments are lower then the bounds from spin-independent experiments.

In this case, the collider experiments provide the strongest bound up to DM masses of ∼

1 TeV. The collider bounds weaken rapidly for higher DM mass since the center-of-mass
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FIG. 6: Razor limits on spin-independent (LH plot) and spin-dependent (RH plot) DM-nucleon

scattering compared to limits from the direct detection experiments. We also include the mono-

jet limits and the combined razor/monojet limits. We show the constraints on spin-independent

scattering from CDMS [2], CoGeNT [36], CRESST [37], DAMA [38], and XENON-100 [3], and

the constraints on spin-dependent scattering from COUPP [39], DAMA [38], PICASSO [40], SIM-

PLE [41], and XENON-10 [42]. We have assumed large systematic uncertainties on the DAMA

quenching factors: qNa = 0.3 ± 0.1 for sodium and qI = 0.09 ± 0.03 for iodine [43], which gives

rise to an enlargement of the DAMA allowed regions. All limits are shown at the 90% confidence

level. For DAMA and CoGeNT, we show the 90% and 3σ contours based on the fits of [44], and

for CRESST, we show the 1σ and 2σ contours.

energy required to create a pair of DM is higher.

In addition to the direct detection bounds, we can also convert the collider bounds into a

DM annihilation cross-section, which is relevant to DM relic density calculations and indirect

detection experiments. The annihilation rate is proportional to the quantity 〈σvrel〉, where

σ is the DM annihilation cross section, vrel is the relative velocity of the annihilating DM

and 〈.〉 is the average over the DM velocity distribution. The quantity σvrel for OV and OA
operators is 5

σV vrel =
1

16πΛ4

∑
q

√
1−

m2
q

m2
χ

(
24(2m2

χ +m2
q) +

8m4
χ − 4m2

χm
2
q + 5m4

q

m2
χ −m2

q

v2
rel

)
(14)

σAvrel =
1

16πΛ4

∑
q

√
1−

m2
q

m2
χ

(
24m2

q +
8m4

χ − 22m2
χm

2
q + 17m4

q

m2
χ −m2

q

v2
rel

)
(15)

5 A comprehensive study of different types of operators can be found in Ref. [8].
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FIG. 7: Razor constraints on DM annihilation for flavor-universal vector or axial couplings of DM

to quarks. We set 〈v2
rel〉 = 0.24 which corresponds to the epoch when thermal relic DM freezes out

in the early universe. However, 〈v2
rel〉 is much smaller in present-day environments (i.e. galaxies)

which results in improved collider bounds on the annihilation rate. The horizontal black line

indicates the value of 〈v2
rel〉 required for DM to be a thermal relic.

As in the case of direct detection, we assume universal DM couplings in quark flavor. In

Fig. 7, we show 〈σvrel〉 as functions of the DM mass, taking 〈v2
rel〉 = 0.24, which corresponds

to the average DM velocity during the freeze-out epoch. A much smaller average 〈v2
rel〉,

e.g. in the galactic environment, would lead to stronger bounds. If the DM has additional

annihilation modes, the bounds weaken by a factor of 1/BR(χ̄χ → q̄q). Assuming that

the effective operator description is still valid during the freeze-out epoch, the thermal relic

density cross-section is ruled out at 90 % C.L. for mχ
<∼ 20 GeV for OV , and mχ

<∼ 100 GeV

for OA.

IV. BEYOND EFFECTIVE THEORY

So far we have made the assumption that the effective theory valid at direct detection

experiments, where the typical momentum transfer is of order 100 MeV, is also valid for

calculating cross sections at the LHC, where the relevant scales are of order hundreds of

GeV to a TeV. Given the large hierarchy between the scales probed at the two classes of
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experiments it is important to consider the possibility that this assumption is violated. In

particular, the presence of new particles at or below the LHC scale can modify the bounds.

In fact, the disparity between these scales is so large that it has been argued that due to

unitarity limits, new physics beyond the DM particle must lie within the LHC’s kinematic

reach in order to generate direct detection cross sections as large as those discussed in the

previous sections [10]. In this section, we will investigate these issues. We shall see that

even if a new mediator must be within the LHC’s reach, for DM masses below a couple

of hundred GeV the mediator can easily be sufficiently heavy that it does not significantly

affect the search in question. We will also find that when the new mediator is sufficiently

light to modify the bounds the limits derived so far may be either strengthened or weakened,

depending on the mass of the mediator relative to the LHC scale and relative to the mass

of the DM particle. The issue of light mediators and how they affect mono-jet and mono-

photon bounds on DM has also been discussed in [7, 9, 13, 15, 17, 45]. Furthermore, if the

mediator is light it can also be searched for directly by looking for a dijet resonance or the

dijet angular distribution [17].

A. Unitarity

In [10], it was shown that unitarity of qq̄ forward scattering with a center of mass energy

of
√
ŝ places a limit on the production of DM at that energy. In particular, this argument

places a lower bound on the cutoff scale Λ

Λ >∼ 0.4
√
β(ŝ)ŝ (16)

where β is the DM velocity which is always of order one and will hence be ignored. In [10],

it was argued that an approximate requirement for the effective theory to be valid at the

LHC is that this bound be satisfied at
√
ŝ =
√
s∗ which was set to 7 TeV. However, this

requirement is not directly related to the search in question, as both our razor analysis and

the monojet searches in [12, 13], do not probe scales of 7 TeV.

We wish to make direct contact between the unitarity limit in Eq. 16 and an actual

collider search for DM. The first difficulty is that the unitarity argument places a limit on

DM pair production at
√
ŝ as opposed to DM plus any number of jets. The former does not

yield observable signals at the collider. In order to make contact with more inclusive searches
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FIG. 8: mχχ distribution for signal events with u-quark vector couplings with R2 > 0.81 and

MR > 250 GeV. The red dashed line corresponds to the unitarity bound mχχ = Λ/0.4. The three

panels show the distribution for DM masses of (a) 1 GeV, (b) 100 GeV, and (c) 500 GeV. The

fractions of events which lie beyond the bound are 8%, 11% and 80% respectively.

it is useful to interpret the limit in Eq. 16 as a limit, not on the energy of the incoming

quarks, but on the center of mass energy of the DM system, mχχ. For the exclusive process,

qq̄ → χχ̄, these two scales are obviously the same, but in an inclusive process, qq̄ → χχ̄+X,

it is not. This amounts to replacing the
√
ŝ by the invariant mass of the DM system mχχ,

or

mχχ <
Λ

0.4
. (17)

This substitution allows us to make contact with any DM production process being probed

at the collider.

We can now ask the following question. Assuming a contact interaction of quarks with
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DM with a cutoff scale Λ right at where we have set our limits, what fraction of the signal

events violate Eq. 17 ? In Fig. 8 we show the invariant mass distribution of events passing

our analysis cuts for a few DM masses. We show the unitarity limit of Λ/0.4 as a dashed

vertical line. Events that violate the bound are guaranteed to be sensitive to the physics

that mediates the interaction of quarks and DM, and thus are not reliably described by the

effective theory. Events that are to the left of the vertical line may be described by the

effective theory, (unless the mediator is light, see below). For DM masses of 1 and 100 GeV,

the fraction of events that violate the unitarity limit is 8% and 11% respectively. Thus, the

bound derived with the full effective theory may be accurate to within this precision, which

we consider acceptable. The situation is different for heavier DM, e.g. 500 GeV. Here, the

fraction of “unitarity violating” events is high at 80%. This is due to two effects. First, the

scale Λ which the analysis constrains (see Figs. 4 and 5), and hence the unitarity limit, is

lower. In addition, the invariant mass distribution is pushed to higher values of mχχ due to

the higher threshold.

We thus conclude that the effective theory can be valid for DM masses below a few

hundred GeV, where the limit on Λ is still flat. This conclusion is in qualitative agreement

with previous analyses [13, 19] which used arguments of perturbativity rather than unitarity.

We emphasize that, as we shall see in the next subsection, the cross section can deviate from

that derived via effective theory if the mediator is light, within the reach of the analysis.

As the mass of the DM becomes heavy enough so that its production is kinematically

suppressed by parton distribution functions (PDFs), the effective theory description breaks

down and the UV physics must be accounted for in order to get an accurate description of

the limits. In the next subsection we will consider a simplified model which includes the

mediating particles explicitly and investigate how the bounds are modified. We will also

see that requiring perturbative simplified models gives qualitatively similar results to the

requirements of unitarity.

B. Light Mediators

We now replace the effective theory analyzed above for a renormalizable “simplified”

model. Consider a neutral vector particle of mass M which couples to DM pairs with a

coupling of gχ and to up-quarks with a coupling of gq. At low energies, say those relevant
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FIG. 9: R2 vs. MR for light mediators, with arbitrary normalization. The LH plot corresponds

to the case of mχ = 50 GeV, MZ′ = 100 GeV, ΓZ′ = MZ′/3 and the RH plot to mχ = 50 GeV,

MZ′ = 300 GeV, ΓZ′ = MZ′/3.

for direct detection, this model is described well by an effective theory with a vector operator

suppressed by the scale Λ ≡M/
√
gχgq.

If the mediator is sufficiently light, but still heavier than 2mχ the mediator may be pro-

duced on-shell, and subsequently decay to a pair of DM particles. This leads to an enhanced

production rate proportional to g2
qg

2
χ/(MΓ) where Γ is the total width of the mediator

particle. If the mediator is much lighter than twice the DM mass, the DM production is

proportional to g2
qg

2
χ/mχ̄χ and is significantly suppressed.

The presence of a light mediator can also affect the kinematic distribution of the signal.

In particular, in the case of on-shell production of a mediator which decays to DM, one

would expect the signal to be quite similar to the background of on-shell production of a

Z which decays invisibly. Indeed, in Fig. 9 we show the distribution of MR and R2 for a

mediator masses of 100 GeV and 300 GeV, and a DM mass of 50 GeV. One can see that

the congregation of events around R2 ∼ 1 is absent and the distribution is similar to that

of the Z+ jets background (see Fig. 1(a)). As a result, the cut efficiency for this case will

be lower, which will partially counter the gain in overall rate when calculating the ultimate

bounds.

In Fig. 10, we show the limits we achieve on Λ ≡M/
√
gqgχ as a function of the mediator

mass M for two fixed DM masses, 50 and 500 GeV. For each case, we consider a range of

widths for the mediator between M/3 and M/8π. We consider these two values as extremes
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FIG. 10: Cutoff scale Λ ≡M/g bounds as a function of mediator mass M , where g ≡ √gχgq. We

assume s-channel vector-type interactions and consider DM masses of mχ = 50 GeV (blue) and

mχ = 500 GeV (red). We vary the width Γ of the mediator between M/3 (solid line) and M/8π

(dashed line).

of what is possible in general, although the narrow width may not be physically realizable

for the DM couplings we consider here. We see that as the mediator mass is lowered the

bound improves because DM production proceeds through the production of an on-shell

mediator which later decays. The improvement can be substantial, as much as a factor of

5 in the limit on the cross section in the narrow mediator case. As the mediator mass is

lowered further and its mass drops below threshold for DM production the limit weakens

significantly, as expected.

We conclude that while it is easy for physics beyond the DM effective theory to modify

the bounds derived within the effective theory, this modification can either cause bounds to

improve in the intermediate mediator mass region or to weaken in the light mediator region.

V. DISCUSSION AND FUTURE PROSPECTS

In this paper, we expand on previous work done on DM limits at colliders using monojets

by utilizing the razor analysis of CMS. At the LHC, one expects events that contain several

high pT jets, and the monojet requirement may restrict the signal efficiency. By allowing for

an arbitrary number of hard jets, we can improve upon the signal efficiency. Furthermore,
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the razor analysis uses a complementary data set to that of the monojet search, thus allowing

one to combine the bounds from the two methods.

We estimate the razor bounds on dark matter that one could expect to achieve after

approximately 800 pb−1 of LHC data, and find that they are slightly better than those from

the existing monojet search, which is based on 1 fb−1. The improvement is about 40% in the

direct detection cross section. Since the uncertainties of the razor analysis are dominantly

statistical in nature we expect this bound to improve with further updates of the razor

analysis employing larger data sets.

We also address the validity of using an effective theory. We find that for light DM masses

(below a few hundred GeV), the bound derived using an effective theory may be accurate

to about 10%. If the mediator is heavy, but below a couple TeV, the limit derived from

effective theory is in fact conservative, and the true limit is stronger. But, if the mediator is

too light to decay to dark matter pairs the true limit is far weaker than the one derived from

effective theory. In addition, we find that the effective theory breaks down at DM masses

that are heavy enough such that the DM production is kinematically suppressed by PDFs,

and we must take into account the UV physics in these cases.

Although originally conceived of as a search tool for squarks/gluinos in supersymmetry

we have demonstrated that razor analysis is a powerful technique to also look for production

of non-colored states that lead to missing energy in the detector. The ease with which it dis-

criminates between signal and background makes us optimistic for future, dedicated analyses,

to search for DM that use this technique. Furthermore, should an excess be observed, the

existence of additional observables beyond those available in monojet/monophoton searches

may prove beneficial in its interpretation.
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